Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Barriers ; : 2304443, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225862

RESUMO

It is known that there are abnormalities of tight junction functions, cell migration and mitochondrial metabolism in human endometriosis and endometrial carcinoma. In this study, we investigated the effects of growth factors and their inhibitors on the epithelial permeability barrier, cell migration and mitochondrial metabolism in 2D and 2.5D cultures of human endometrioid endometrial carcinoma Sawano cells. We also investigated the changes of bicellular and tricellular tight junction molecules and ciliogenesis induced by these inhibitors. The growth factors TGF-ß and EGF affected the epithelial permeability barrier, cell migration and expression of bicellular and tricellular tight junction molecules in 2D and 2.5D cultures of Sawano cells. EW-7197 (a TGF-ß receptor inhibitor), AG1478 (an EGFR inhibitor) and SP600125 (a JNK inhibitor) affected the epithelial permeability barrier, cell migration and mitochondrial metabolism and prevented the changes induced by TGF-ß and EGF in 2D and 2.5D cultures. EW-7197 and AG1478 induced ciliogenesis in 2.5D cultures. In conclusion, TGF-ß and EGF promoted the malignancy of endometrial cancer via interplay among the epithelial permeability barrier, cell migration and mitochondrial metabolism. EW-7197 and AG1478 may be useful as novel therapeutic treatments options for endometrial cancer.

2.
Tissue Barriers ; 11(3): 2106113, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-35883247

RESUMO

Lipolysis-stimulated lipoprotein receptor (LSR), a lipid metabolism-related factor localized in tricellular tight junctions (tTJs), plays an important role in maintaining the epithelial barrier. LSR is highly expressed in well-differentiated endometrial endometrioid carcinoma (EEC), and its expression decreases during malignancy. Angubindin-1, a novel LSR ligand peptide, regulates tTJs without cytotoxicity, enhances paracellular permeability, and regulates epithelial barrier via c-Jun N-terminal kinase (JNK)/cofilin. In this study, we investigated the immune-modulatory roles of an anti-LSR antibody in the treatment of EEC in vitro compared to those of angubindin-1. We prepared an antibody against the extracellular N-terminal domain of human LSR (LSR-N-ab) and angubindin-1. EEC cell-line Sawano cells in 2D and 2.5D cultures were treated with 100 µg/ml LSR-N-ab or 2.5 µg/ml angubindin-1 with or without protein tyrosine kinase 2ß inhibitor PF431396 (PF43) and JNK inhibitor SP600125 (SP60) at 10 µM. Treatment with LSR-N-ab and angubindin-1 decreased LSR at the membranes of tTJs and the activity of phosphorylated LSR and phosphorylated cofilin in 2D culture. Treatment with LSR-N-ab and angubindin-1 decreased the epithelial barrier measured as TEER values in 2D culture and enhanced the epithelial permeability of FD-4 in 2.5D culture. Treatment with LSR-N-ab, but not angubindin-1, induced apoptosis in 2D culture. Pretreatment with PF43 and SP60 prevented all the changes induced by treatment with LSR-N-ab and angubindin-1. Treatment with LSR-N-ab and angubindin-1 enhanced the cell metabolism measured as the mitochondrial respiration levels in 2D culture. LSR-N-ab and angubindin-1 may be useful for therapy of human EEC via enhanced apoptosis or drug absorption.


Assuntos
Neoplasias do Endométrio , Células Epiteliais , Feminino , Humanos , Células Epiteliais/metabolismo , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/metabolismo , Apoptose , Transdução de Sinais , Fatores de Despolimerização de Actina/metabolismo
3.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944960

RESUMO

Tight junction proteins play roles beyond permeability barriers functions and control cell proliferation and differentiation. The relation between tight junctions and the signal transduction pathways affects cell growth, invasion and migration. Abnormality of tight junction proteins closely contributes to epithelial mesenchymal transition (EMT) and malignancy of various cancers. Angulin-1/lipolysis-stimulated lipoprotein receptor (LSR) forms tricellular contacts that has a barrier function. Downregulation of angulin-1/LSR correlates with the malignancy in various cancers, including endometrioid-endometrial carcinoma (EEC). These alterations have been shown to link to not only multiple signaling pathways such as Hippo/YAP, HDAC, AMPK, but also cell metabolism in ECC cell line Sawano. Moreover, loss of angulin-1/LSR upregulates claudin-1, and loss of apoptosis stimulating p53 protein 2 (ASPP2) downregulates angulin-1/LSR. Angulin-1/LSR and ASPP2 concentrate at both midbody and centrosome in cytokinesis. In EEC tissues, angulin-1/LSR and ASPP2 are reduced and claudin-2 is overexpressed during malignancy, while in the tissues of endometriosis changes in localization of angulin-1/LSR and claudin-2 are seen. This review highlights how downregulation of angulin-1/LSR promotes development of endometriosis and EEC and discusses about the roles of angulin-1/LSR and its related proteins, including claudins and ASPP2.

4.
Reprod Sci ; 27(11): 2092-2103, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32548807

RESUMO

Claudin-2 (CLDN-2) is a leaky-type tight junction protein, and its overexpression increases tumorigenesis of some types of cancer cells. In the present study, to examine the possibility of targeting CLDN-2 in the therapy for endometrioid endometrial adenocarcinoma, we investigated the regulation and role of CLDN-2 in endometriosis and endometrioid endometrial adenocarcinoma. In endometrioid endometrial adenocarcinoma tissues, marked upregulation of CLDN-2 was observed together with malignancy, while in endometriosis tissues, a change in the localization of CLDN-2 was observed. In cells of the endometrial adenocarcinoma cell line Sawano, which highly express CLDN-2, downregulation of CLDN-2 induced by the siRNA upregulated the epithelial barrier and inhibited cell migration. Furthermore, the downregulation of CLDN-2 affected the cell cycle and inhibited cell proliferation. In Sawano cells cultured with high-glucose medium, CLDN-2 expression was downregulated at the mRNA and protein levels. The high-glucose medium upregulated the epithelial barrier, cell proliferation, and migration, and inhibited cell invasion. The histone deacetylase (HDAC) inhibitor tricostatin A (TSA), which has antitumor effects, downregulated CLDN-2 expression, cell proliferation, invasion, and migration, and upregulated the epithelial barrier. The mitochondrial respiration level, an indicator of cancer metabolism, was downregulated by CLDN-2 knockdown and upregulated by the high-glucose condition. Taken together, these results indicated that overexpression of CLDN-2 closely contributed to the malignancy of endometrioid endometrial adenocarcinoma. Downregulation of CLDN-2 via the changes of the glucose concentration and treatment with HDAC inhibitors may be important in the therapy for endometrial cancer.


Assuntos
Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/terapia , Claudinas/metabolismo , Carcinoma Endometrioide/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Claudinas/genética , Regulação para Baixo , Endometriose/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Regulação para Cima
5.
Histochem Cell Biol ; 154(2): 197-213, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32266459

RESUMO

Apoptosis-stimulating p53 protein 2 (ASPP2) is an apoptosis inducer that acts via binding with p53 and epithelial polarity molecule PAR3. Lipolysis-stimulated lipoprotein receptor (LSR) is an important molecule at tricellular contacts, and loss of LSR promotes cell migration and invasion via Yes-associated protein (YAP) in human endometrial cancer cells. In the present study, to find how ASPP2 suppression promotes malignancy in human endometrial cancer, we investigated its mechanisms including the relationship with LSR. In endometriosis and endometrial cancers (G1 and G2), ASPP2 was observed as well as PAR3 and LSR in the subapical region. ASPP2 decreased in G3 endometrial cancer compared to G1. In human endometrial cancer cell line Sawano, ASPP2 was colocalized with LSR and tricellulin at tricellular contacts and binding to PAR3, LSR, and tricellulin in the confluent state. ASPP2 suppression promoted cell migration and invasion, decreased LSR expression, and induced expression of phosphorylated YAP, claudin-1, -4, and -7 as effectively as the loss of LSR. Knockdown of YAP prevented the upregulation of pYAP, cell migration and invasion induced by the ASPP2 suppression. Treatment with a specific antibody against ASPP2 downregulated ASPP2 and LSR, affected F-actin at tricellular contacts, upregulated expression of pYAP and claudin-1, and induced cell migration and invasion via YAP. In normal human endometrial epithelial cells, ASPP2 was in part colocalized with LSR at tricellular contacts and knockdown of ASPP2 or LSR induced expression of claudin-1 and claudin-4. ASPP2 suppression promoted cell invasion and migration via LSR and YAP in human endometrial cancer cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias do Endométrio/metabolismo , Receptores de Lipoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Movimento Celular , Células Cultivadas , Neoplasias do Endométrio/patologia , Feminino , Humanos , Imuno-Histoquímica , Receptores de Lipoproteínas/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...